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ABSTRACT

A simple particle tracking technique based on an Eulerian-Lagrangian
finite element approach was used to solve the solute transport equation.
The method introduces only one moving particle to track each concentra-
tion front continuously forward in one-dimensional transport problems. At
each time step, al element nodes are taken as moving particles along the
characteristic path. The single-step reverse particle tracking technique was
adopted to obtain the ‘ convective components of concentrations for nodes
away from the concentration front, whereas the convective components for
nodes within the front area were obtained by the single-step forward
particle tracking technique. Results from a large number of simulations
showed that the numerical solution improved when the Lagrangian
derivative was multiplied with a correction factor larger than one.

INTRODUCTION

Numerica simulators of the convection-dispersion equation (CDE) are
widely used for predicting solute transport in soil and aquifer systems.
Application of conventiona finite eement and finite difference numerical
methods to the solution of convection-dominated transport problems often
results in oscillatory behavior and/or numerical dispersion, unless very fine
temporal and spatial steps are adopted. The mixed Eulerian-Lagrangian
method has proven to be quite effective in eliminating or reducing
oscillations and numerical dispersion. This type of method has been used
extensively in the past to solve a variety of surface and subsurface transport
problems (Konikow and Bredehoeft [6], Neuman and Sorek [8], Neuman
[9, Molz et d. [7], Huang [5], Yeh [IlI], Dimou and Adams [I]). The
method uses a Lagrangian approach to treat the convection term along
characteristic paths, while al other terms are solved on a fiied Eulerian
grid. The Lagrangian approach usualy involves either continuous forward
particle tracking (CFPT) (Carder et a. [4], Konikow and Bredehoeft [6],
Dimou and Adams [l], among others), or a single-step reverse particle
tracking (SRPT) method (Molz et a. [7], Yeh [Il], Galeati et a. [3]).
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As shown by Neuman and Sorek [8], the SRPT method can still result
in significant numerical dispersion. The CFPT method, on the other hand,
is virtually free of numerical dispersion but suffers from instability when
the time step size exceeds a certain limit (Neuman.[9]). Complex boundary
conditions and nonlinearities are also not easily incorporated. In addition,
the numerica implementation of a large number of particles can become
guite time-consuming and laborious. In Neuman's hybrid method [9], the
convective contribution to the concentration near a steep concentration

front is tracked forward-using moving particles clustered around the front.
Away from afront, however, the convection problem is being handled with
the SRPT method. This approach has proven to be very effective in
eliminating most of the numerical difficulties.

Unfortunately, one drawback of Neuman's hybrid method is that a
sophisticated procedure must be used at each time step to map concentra-
tions from particles to nodes of the fixed grid, and to re-establish the
concentration of particles from those at the nodes. The objective of this
paper is to describe a much simpler and more efficient particle tracking
technique for solving the one-dimensional CDE.

THEORY

The governing equation for one-dimensional solute transport in a porous
medium is taken as

dc 124 dc dc
RZ =2 (9p Ly -v 2 - 1
ot Gax( ax) Vax wery ()

where c is the solution concentration, tistime, x isdistance, R =1 +pk/8
is the retardation factor, p is the porous medium bulk density, k is an
empirical distribution constant, 8 is the volumetric moisture content, v is
the pore-water velocity, and i and y are rate constants for first-order decay
and zero-order production, respectively. Equation (1) will be solved
subject to the initia and boundary conditions

c(x, 0) =C(x) (29)

(0% | =, 2

x=0

ac _
é;(L,t) =0 (20)
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where C(x) and C,,(t) are prescribed functions of x andt, respectively; 8
controls the type of boundary condition imposed at the inlet position (8 =0
for prescribed concentration conditions and 8= 1 for prescribed flux
conditions); and L is the-length of the medium being considered. Using
the Lagrangian derivative
Dc _ dc .dc
=9 .y

— 3
Dt ot ox ®)

where v*=v/R, Equation (1) can be rewritten in Lagrangian form as

grDec 138

dc
—(68D—) -~
Dr ~ g D) THerY )
in which ¢ no longer represents the concentration at a point in space and
time, but rather the concentration of a fluid particle moving aong a
characteristic path described by the equation

dx _,. (5)
ar

PROPOSED PARTICLE-TRACKING METHOD

Assume that the concentration ¢, at time ¢, is known. Equation (4) subject
to auxiliary conditions (2a, b, c) will be used to solve for ¢, at time step
L=t + At, where At is the time increment, using the following four
consecutive steps:

Since numerical difficulties are expected to occur primarily near sharp
concentration fronts, the first and foremost step is to find as accurately as
possible the positions of the concentration fronts. This is done by
introducing a moving particle at the input boundary and at the center of
each source or sink location, and subsequently tracking these particles
continuously forward at each time step along their characteristic paths. Let
particle P represent the center of a concentration front. If this particle at
time ¢, is located at x,”, its position at time ¢,,, will be

xkpd =XkP + J"M v'dt (6)
't

We note that a new moving particle must be introduced at the inflow
boundary each time the concentration there changes. Similarly, a new
particle is needed each time the concentration of a source or sink changes.
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Next., the nodes around each concentration front are considered to be
moving particles and tracked forward for the duration of one time step. As
amoving particle, the position of node n at time t,;; will be

X = x, + J:',.nv ‘dt (n=12,... N.) )

k

where x, is the fiied podstion of node n, and N, is the number of nodes
considered to be moving particles. The convective component for nodes
covered by moving particles was estimated from particle concentrations, ¢/,
using the inverse distance interpolation formula (Fujinawa [2])

c = (®)

where € is some limiting value of the distance r;=lx,-x**'| between
node n and moving particle J.

3 g :
In areas where the concentration gradients are weak, the convective
component was obtained using the efficient single-step reverse particle
tracking technique (Neuman [9]). Each node, n, in these areas is
considered to be a fictitious particle and sent backward during a particular
time step along its characteristic path to the point

x| =x - J:'M v'de )

k

This means that a particle leaving at ¢, will reach the grid point location x,
exactly at t,,,. For a steady-state flow field, x,” is the same for al nodes,
and hence needs to be caculated only once. The convective component,
¢, for node n can be computed by the finite element method. In our
anaysis, the convective component takes the concentration of the down-
stream node of the element where x,’ was located.

4. Finite Element Approximation
Define the finite element approximation of ¢ as

¢ "t =¥ c0) o) (10)
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where N is the number of nodes placed in the solution domain, and @{x)
are the linear basis functions. Application of the Galerkin procedure to
Equation (4) leads to

Dc ac .
l —) +uc-vyle.dx =1,2,..., 11
[R Dt oax ax) vVl @ N (1Y

where L is the solution domain. By applying mass-lumping to the time-
derivative term,. integrating by -parts, and using Equation (10) for c,
Equation (11) can be rewritten in matrix form as

(8] + [P} - (6] + 1 {55} =0 )

where

a(qv/i‘?) 8¢ J-Daev 99, (132)

———Ldx

E, = f 6D
=L# ‘P,-¢,-dx H,.j =JLR ¢,-¢jdx (13b)

(13¢)

0
in which the Lagrangian derivative was approximated by

Dc, C,-I“l Y (14)
D¢ At

Solving Equation (12) leads to the solution, ¢,**!. As will be shown later,
we found that the numerical results could be further improved by
multiplying the Lagrangian derivative with an empirical correction factor
larger than one.

EXAMPLES

The proposed particle tracking method was used to simulate convective-
dispersive solute transport in a homogeneous medium during steady-state
water flow (6 and v are constant), and without considering adsorption
(R = 1) and zero- or first-order reactions (y=u =0) in Equation (1). i.€e.,



92 Numerical Methods in Water Resources

dc _p % _ dc
E't'D? Vax (15)

subject to the initial and boundary conditions

1 O<est, 5c (16)
c(x,0)= 0 0=\, ., X wn=0

Using any arbitrary buf con&tent set of units, the physical and finite
element grid parameters are v = 0.5, L =2.5, Ax = 0.05, and D =10?, 10", 10%,
and 10, resulting in mesh Peclet numbers, Pe =v4x/D, of 2.5,25,250, and
2500. The selected time steps At are 1.25 and 2.5, giving local Courant
numbers, Cu=vdt/4x, of 1.25 and 2.5, respectively. Results obtained with
our method will be compared with those computed using Neuman's hybrid
method (Neuman [9]) assuming 20 moving particles, and the analytical
solution of Equations (15) and (16) as given by van Genuchten and Alves
10).

[ ]Figure 1 shows very good agreement between our solution (solid
circles), Neuman’'s method (dashed lines) and the analytical solution (solid
lines). Numerical oscillations were completely eliminated by both methods.
Actualy, our results appear dlightly better than those obtained with
Neuman’s approach.

Figure 2 presents simulation results for a transport problem with a
step input concentration pulse (¢, = 1) at the inlet boundary. The numerical
solution closely approximates the analytical results at the lower Peclet
number. However, some numerical dispersion is apparent in our as well
as Neuman's method when the Peclet number becomes very large.

Figure 3 shows comparisons of the maximum error (ME) and the sum
of sguared error (SE) between the analytical and numerical results. SE
reflects primarily the amount of numerical dispersion. These and other
results indicate that the errors generated with our relatively simple particle
tracking method are generally smaller than those obtained with Neuman's
approach at relatively low to intermediate values of the Peclet number, Pe.
Table 1 further demonstrates that for relatively large Peclet numbers the
amount of numerical dispersion introduced with our scheme (as reflected
by the value of SE) is the same or only dightly higher than SE obtained
with Neuman's approach. On the other hand, the maximum error, ME,
produced with our method was aways smaler than the maximum error
generated with Neuman's scheme.

By multiplying the Lagrangian derivative with a factor, w, larger than
one, the accuracy of the simulated results by our as well as Neuman's
method can be further improved. For-Peclet numbers larger than about
10%, the computed result becomes better as  increases. More dramatic
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improvements in accuracy were observed within a given range of @ values.
As shown in Figure 3, an optimal value of @ exists for Peclet numbers of
order 10*. For Peclet number of order 10° a value of dightly more than
one appears optimal. One likely explanation for these numerical effectsis
that alarger @ value makes the capacity matrix, H, in Equation (12) more
diagonally dominant, a feasture which is known to increase numerical
stability.

The simulated solutions were found to be sensitive to the size of the
concentration front area to which the single-step forward particle tracking
technique was applied. The errors increased significantly when the method
was applied to areas over where the concentration fronts were poorly
defined. Our results suggest that for relatively large Peclet numbers it is
sufficient to use only two or three nodes ahead and behind the
concentration front as the forward tracking particles. More nodes should
be considered when the Peclet number becomes less than about 100.

The results given here show that the proposed particle-tracking method
virtually eliminates numerical oscillations and artificial dispersion for
convection-dispersion problems involving a widerange of mesh Peclet
numbers, and for local Courant numbers well above 1. Compared with
other particle tracking techniques for solving solute transport problems, our
method is also much simpler and easier to implement, especialy for
transient velocity fields.

Table 1. Maximum errors (ME) and sum of squared errors (SE) obtained
with the method proposed in this study and Neuman's approach (@ = 1).

Pe = 250 Pe = 2500

This study Neuman This study Neuman
ME SE ME SE ME SE ME SE

t=2 0216 0.080 0231 0059 0219 0.082 0.228 0.056
t=3 0205 008 0266 008 0214 0.093 0.276 0.070
t=4 0242 0114 0279 0110 0269 0.132 0305 0.120
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Fig. 1 Comparison of simulated results using the method described in this
study (solid circles), Neuman’s approach (dashed lines), and the
analytical solution (solid lines).
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Fig. 2 Comparison of concentration distributions obtained with our
method (solid circles) and the analytical solution (solid lines).
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Fig. 3 Mean error (ME) and sum of squared error (SE) as a function of
the correction factor, , obtained with the method proposed in this
study (solid lines) and Neuman’s approach (dashed lines).



